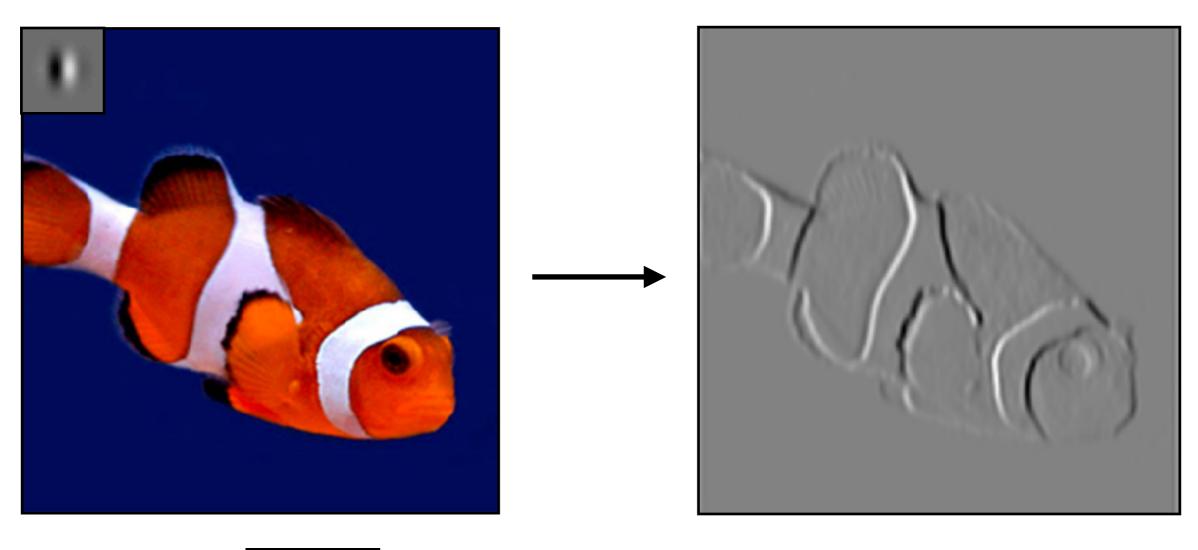


# Deep Learning for Analyzing Images and Time Series

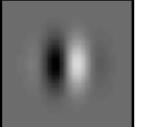
most slides are by George Chen (CMU) some slides are by Phillip Isola (OpenAI, UC Berkeley)

CMU 95-865 Fall 2017

# Image Analysis with Convolutional Neural Nets (CNNs, also called convnets)







Slide by Phillip Isola

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

Filter (also called "kernel")

Input image

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

Filter (also called "kernel")

Input image

#### Take dot product!

| 00 | 00             | 00             | 0 | 0 | 0 | 0 |
|----|----------------|----------------|---|---|---|---|
| 00 | 01             | <sup>1</sup> 0 | 1 | 1 | 0 | 0 |
| 00 | <sup>1</sup> 0 | <sup>1</sup> 0 | 1 | 1 | 1 | 0 |
| 0  | 1              | 1              | 1 | 0 | 0 | 0 |
| 0  | 1              | 1              | 1 | 1 | 1 | 0 |
| 0  | 0              | 1              | 1 | 1 | 0 | 0 |
| 0  | 0              | 0              | 0 | 0 | 0 | 0 |

| 0 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

Input image

#### Take dot product!

| 0 | 00             | 00             | 00             | 0 | 0 | 0 |
|---|----------------|----------------|----------------|---|---|---|
| 0 | 0 <b>0</b>     | <sup>1</sup> 1 | <sup>1</sup> 0 | 1 | 0 | 0 |
| 0 | <sup>1</sup> 0 | <sup>1</sup> 0 | <sup>1</sup> 0 | 1 | 1 | 0 |
| 0 | 1              | 1              | 1              | 0 | 0 | 0 |
| 0 | 1              | 1              | 1              | 1 | 1 | 0 |
| 0 | 0              | 1              | 1              | 1 | 0 | 0 |
| 0 | 0              | 0              | 0              | 0 | 0 | 0 |

| 0 | 1 |  |  |
|---|---|--|--|
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |

Input image

#### Take dot product!

| 0 | 0 | 00             | 00             | 00             | 0 | 0 |
|---|---|----------------|----------------|----------------|---|---|
| 0 | 0 | 1 <b>0</b>     | <sup>1</sup> 1 | <sup>1</sup> 0 | 0 | 0 |
| 0 | 1 | <sup>1</sup> 0 | <sup>1</sup> 0 | <sup>1</sup> 0 | 1 | 0 |
| 0 | 1 | 1              | 1              | 0              | 0 | 0 |
| 0 | 1 | 1              | 1              | 1              | 1 | 0 |
| 0 | 0 | 1              | 1              | 1              | 0 | 0 |
| 0 | 0 | 0              | 0              | 0              | 0 | 0 |

| 0 | 1 | 1 |  |
|---|---|---|--|
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |

Input image

#### Take dot product!

| 0 | 0 | 0 | 00             | 00             | 00             | 0 |
|---|---|---|----------------|----------------|----------------|---|
| 0 | 0 | 1 | 1 <b>0</b>     | <sup>1</sup> 1 | 00             | 0 |
| 0 | 1 | 1 | <sup>1</sup> 0 | <sup>1</sup> 0 | <sup>1</sup> 0 | 0 |
| 0 | 1 | 1 | 1              | 0              | 0              | 0 |
| 0 | 1 | 1 | 1              | 1              | 1              | 0 |
| 0 | 0 | 1 | 1              | 1              | 0              | 0 |
| 0 | 0 | 0 | 0              | 0              | 0              | 0 |

| 0 | 1 | 1 | 1 |  |
|---|---|---|---|--|
|   |   |   |   |  |
|   |   |   |   |  |
|   |   |   |   |  |
|   |   |   |   |  |

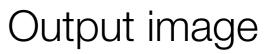
Input image

#### Take dot product!

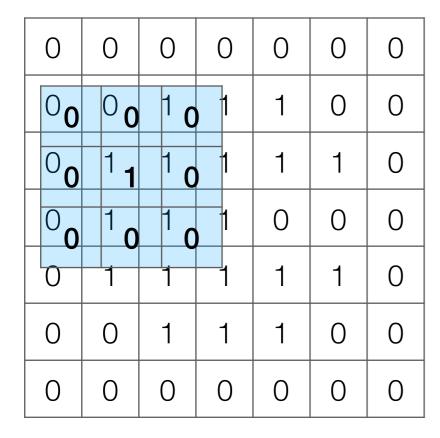
| 0 | 0 | 0 | 0 | <b>O0</b>      | 00             | 00 |
|---|---|---|---|----------------|----------------|----|
| 0 | 0 | 1 | 1 | 1 <b>0</b>     | 01             | 00 |
| 0 | 1 | 1 | 1 | <sup>1</sup> 0 | <sup>1</sup> 0 | 00 |
| 0 | 1 | 1 | 1 | 0              | 0              | 0  |
| 0 | 1 | 1 | 1 | 1              | 1              | 0  |
| 0 | 0 | 1 | 1 | 1              | 0              | 0  |
| 0 | 0 | 0 | 0 | 0              | 0              | 0  |

| 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |

Input image



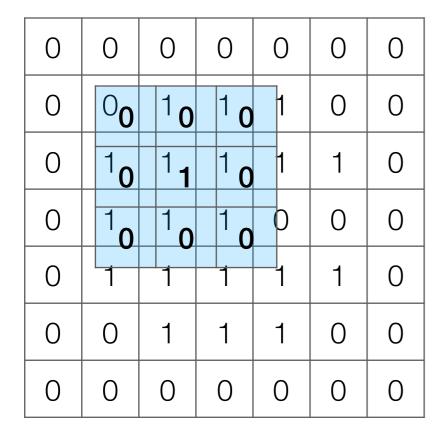
#### Take dot product!



| 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|
| 1 |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |

Input image

#### Take dot product!



| 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |

Input image

Output image

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 1 |   |   |   |   |
|---|---|---|---|---|
|   | 0 | 0 | 0 |   |
|   | 0 | 1 | 0 | = |
|   | 0 | 0 | 0 |   |

\*

| 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image

Output image

Note: output image is smaller than input image If you want output size to be same as input, pad 0's to input

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 |   |
|---|---|---|---|
| 0 | 1 | 0 | = |
| 0 | 0 | 0 |   |

\*

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Input image

Output image

Note: output image is smaller than input image If you want output size to be same as input, pad 0's to input

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

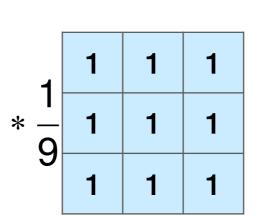
\*

=

| 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |

Input image

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |   |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |   |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | * |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |   |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |   |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |



|                | 3 | 5 | 6 | 5 | 3 |
|----------------|---|---|---|---|---|
| 4              | 5 | 8 | 8 | 6 | 3 |
| $=\frac{1}{0}$ | 6 | 9 | 8 | 7 | 4 |
| 9              | 5 | 8 | 8 | 6 | 3 |
|                | 3 | 5 | 6 | 5 | 3 |

#### Input image

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

-1 -1 2 2 -1 -1

\*

-1

2

-1

=

| 0 | 1 | 3  | 1  | 0  |
|---|---|----|----|----|
| 1 | 1 | 1  | З  | З  |
| 0 | 0 | -2 | -4 | -4 |
| 1 | 1 | 1  | З  | З  |
| 0 | 1 | 3  | 1  | 0  |

Input image

Very commonly used for:

• Blurring an image



|   | 1/9 | 1/9 | 1/9 |  |
|---|-----|-----|-----|--|
| * | 1/9 | 1/9 | 1/9 |  |
|   | 1/9 | 1/9 | 1/9 |  |



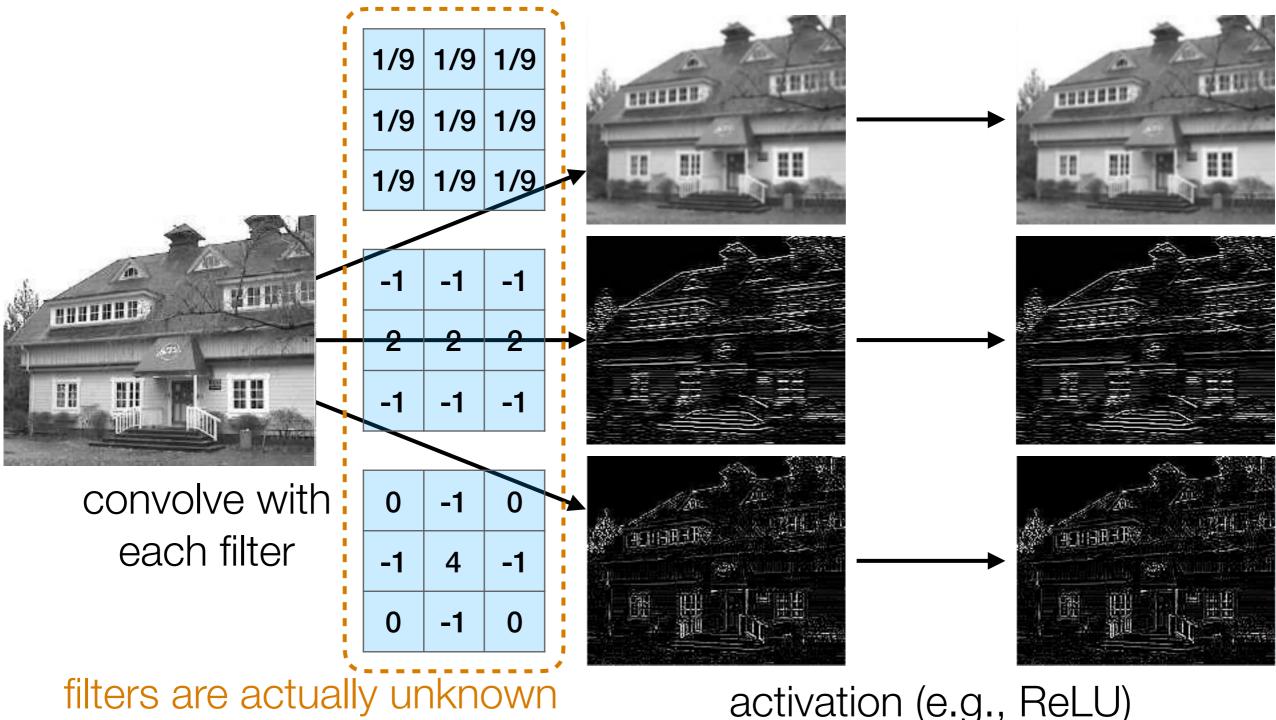
• Finding edges



|   | -1 | -1 | -1 |   |
|---|----|----|----|---|
| * | 2  | 2  | 2  | = |
|   | -1 | -1 | -1 |   |

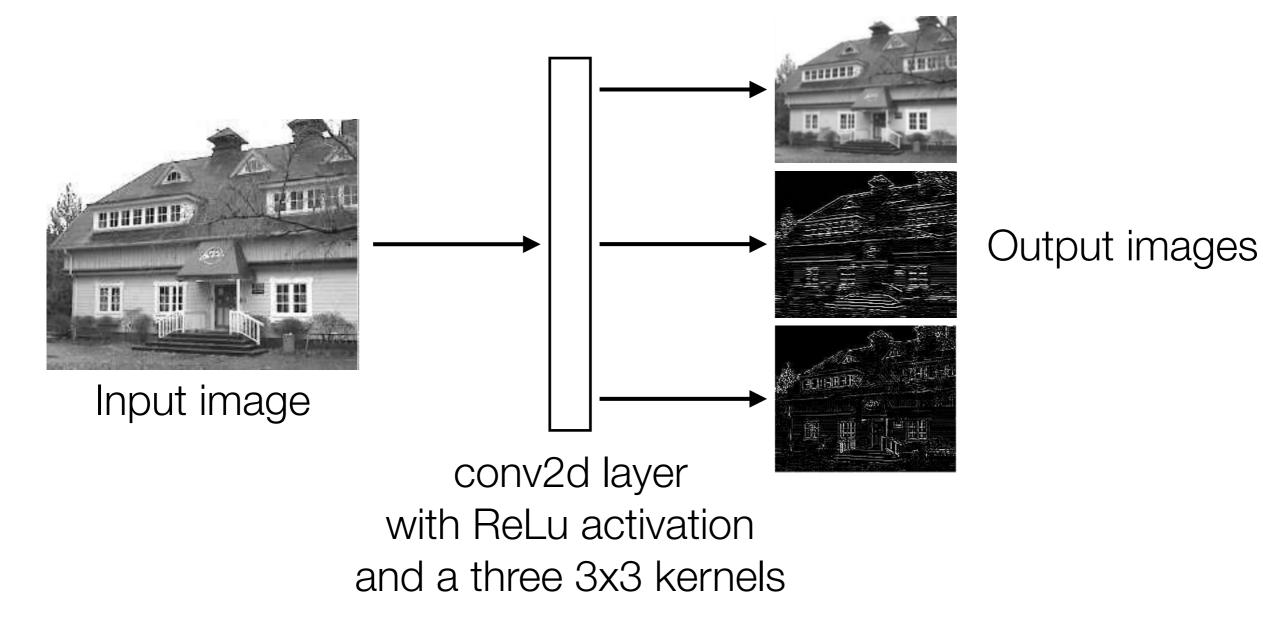


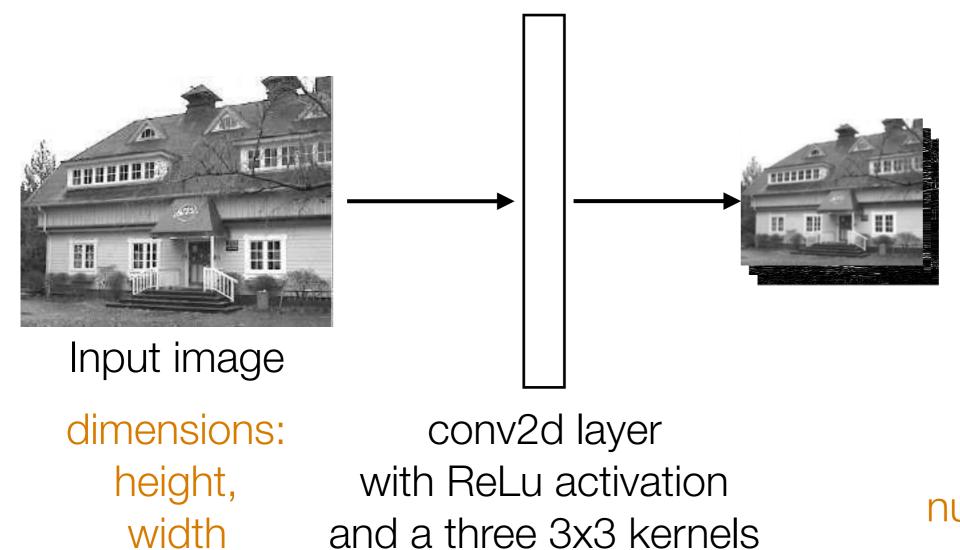
(this example finds horizontal edges)



and are learned!

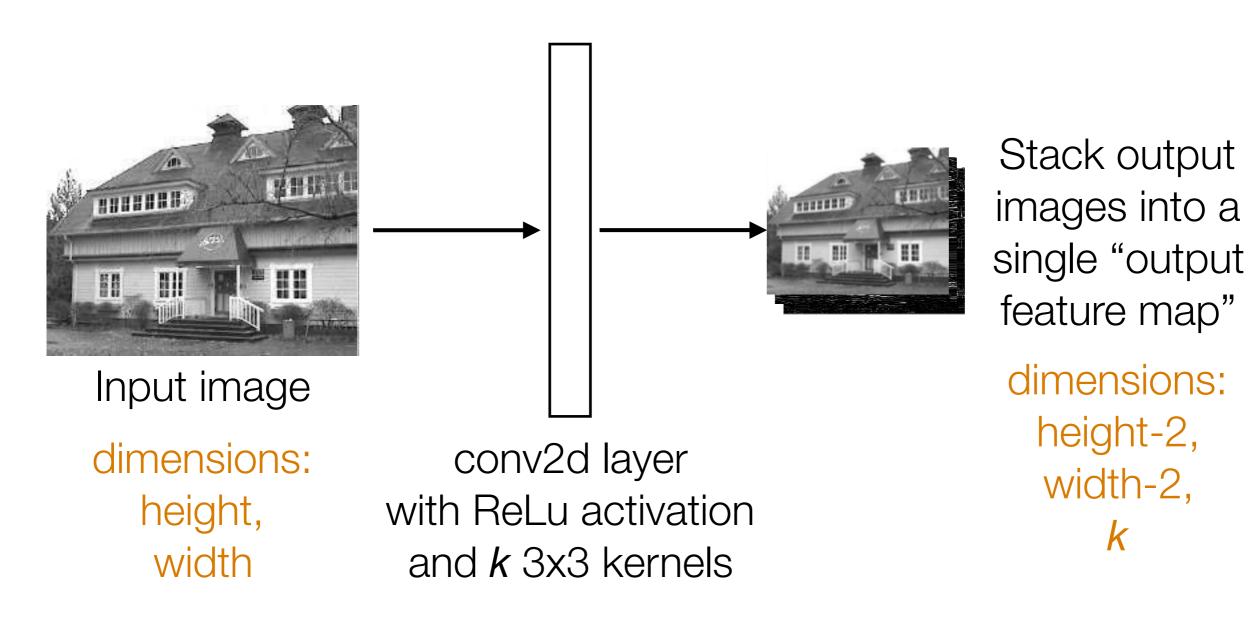
activation (e.g., ReLU)





Stack output images into a single "output feature map"

dimensions: height-2, width-2, number of kernels (3 in this case)



Images from: http://aishack.in/tutorials/image-convolution-examples/

width-2,

k



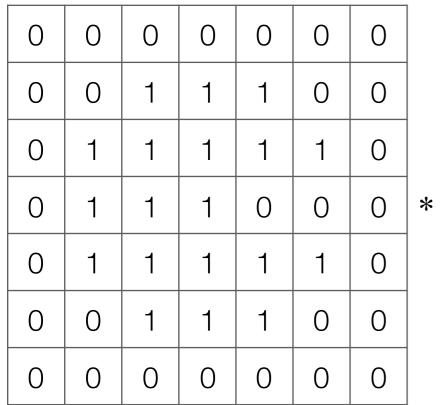
Stack output images into a single "output feature map"

dimensions: height-2, width-2, k

# Pooling

• Aggregate local information

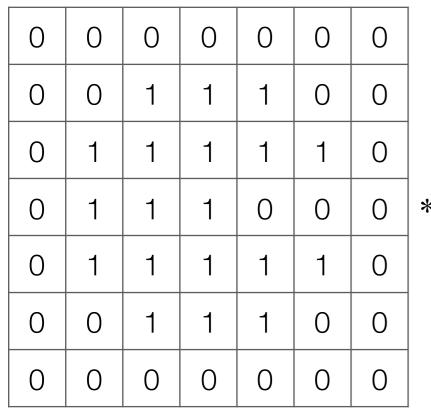
 Produces a smaller image (each resulting pixel captures some "global" information)



|   | -1 | -1 | -1 |   |
|---|----|----|----|---|
| < | 2  | 2  | 2  | = |
|   | -1 | -1 | -1 |   |

|   | 0 | 1 | 3  | 1  | 0  |
|---|---|---|----|----|----|
|   | 1 | 1 | 1  | З  | 3  |
| = | 0 | 0 | -2 | -4 | -4 |
|   | 1 | 1 | 1  | З  | 3  |
|   | 0 | 1 | 3  | 1  | 0  |

Input image



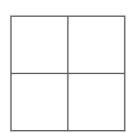
|   | -1 | -1 | -1 |   |
|---|----|----|----|---|
| * | 2  | 2  | 2  | = |
|   | -1 | -1 | -1 |   |

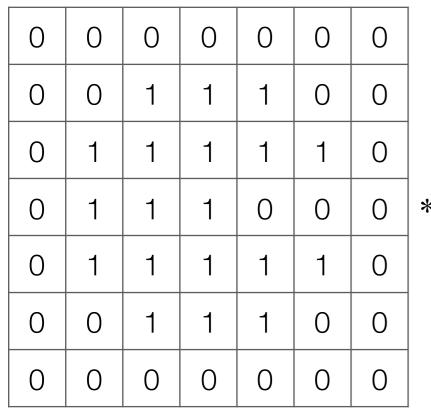
|   | 0 | 1 | 3  | 1  | 0  |
|---|---|---|----|----|----|
|   | 1 | 1 | 1  | 3  | 3  |
| • | 0 | 0 | -2 | -4 | -4 |
|   | 1 | 1 | 1  | 3  | 3  |
|   | 0 | - | 3  | 1  | 0  |
|   | U |   | 5  | I  |    |

| 0 | 1 | 3 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 3 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 3 | 3 |
| 0 | 1 | 3 | 1 | 0 |

Output image after ReLU

Input image





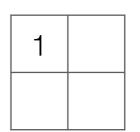
|   |    |    |    | _ |
|---|----|----|----|---|
|   | -1 | -1 | -1 |   |
| * | 2  | 2  | 2  | = |
|   | -1 | -1 | -1 |   |

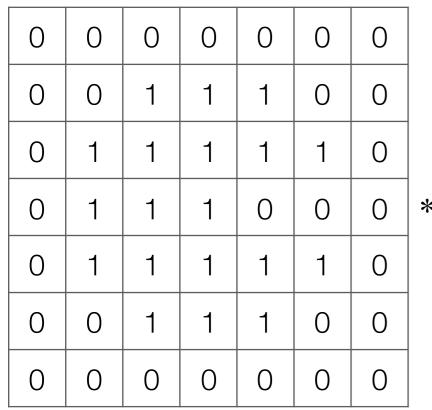
|   | 0 | 1 | 3  | 1  | 0  |
|---|---|---|----|----|----|
|   |   | - | 0  | -  | 0  |
|   | 1 | 1 | 1  | 3  | 3  |
| = | 0 | 0 | -2 | -4 | -4 |
|   | 1 | 1 | 1  | З  | 3  |
|   | 0 | 1 | 3  | 1  | 0  |

| 0 | 1 | 3 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 3 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 3 | 3 |
| 0 | 1 | З | 1 | 0 |

Output image after ReLU

Input image





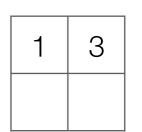
|   |    |    |    | _ |
|---|----|----|----|---|
|   | -1 | -1 | -1 |   |
| k | 2  | 2  | 2  | = |
|   | -1 | -1 | -1 |   |

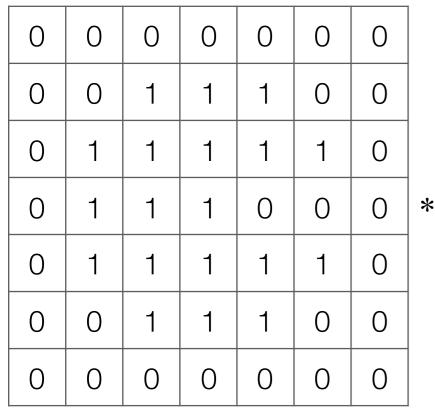
| 0 | 1 | З  | 1  | 0  |
|---|---|----|----|----|
| 1 | 1 | 1  | 3  | 3  |
| 0 | 0 | -2 | -4 | -4 |
| 1 | 1 | 1  | 3  | 3  |
| 0 | 1 | 3  | 1  | 0  |

| 0 | 1 | 3 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 3 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 3 | 3 |
| 0 | 1 | 3 | 1 | 0 |

Output image after ReLU

Input image





|   |    |    |    | _ |
|---|----|----|----|---|
|   | -1 | -1 | -1 |   |
| k | 2  | 2  | 2  | = |
|   | -1 | -1 | -1 |   |

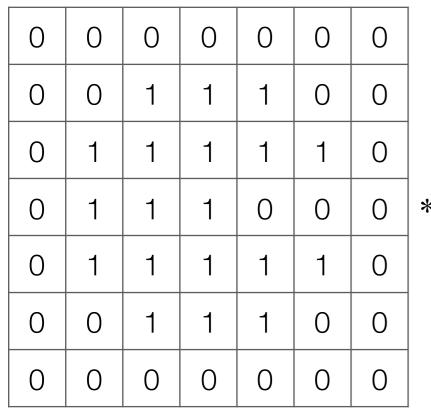
| 0 | 1 | 3  | 1  | 0  |
|---|---|----|----|----|
| 1 | 1 | 1  | 3  | 3  |
| 0 | 0 | -2 | -4 | -4 |
| 1 | 1 | 1  | 3  | 3  |
| 0 | 1 | 3  | 1  | 0  |

| 0 | 1 | 3 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 3 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 3 | 3 |
| 0 | 1 | З | 1 | 0 |

Output image after ReLU

Input image

1 3 1



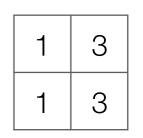
|   | -1 | -1 | -1 |   |
|---|----|----|----|---|
| * | 2  | 2  | 2  | = |
|   | -1 | -1 | -1 |   |

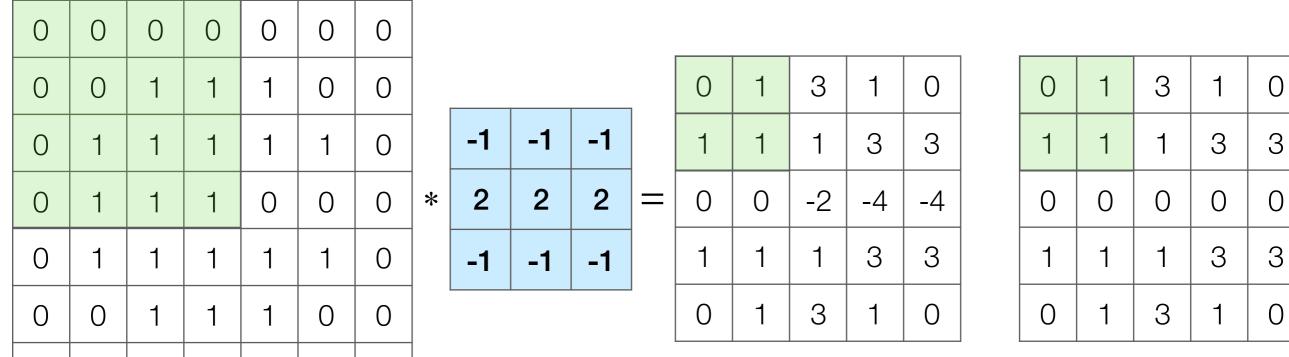
|   | 0 | 1 | 3  | 1  | 0  |
|---|---|---|----|----|----|
|   | 1 | 1 | 1  | 3  | 3  |
| = | 0 | 0 | -2 | -4 | -4 |
|   | 1 | 1 | 1  | 3  | 3  |
|   | 0 | 1 | 3  | 1  | 0  |

| 0 | 1 | 3 | 1 | 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 3 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 3 | 3 |
| 0 | 1 | 3 | 1 | 0 |

Output image after ReLU

Input image





Output image after ReLU

Input image

0

0

 $\left( \right)$ 

0

0

()

0

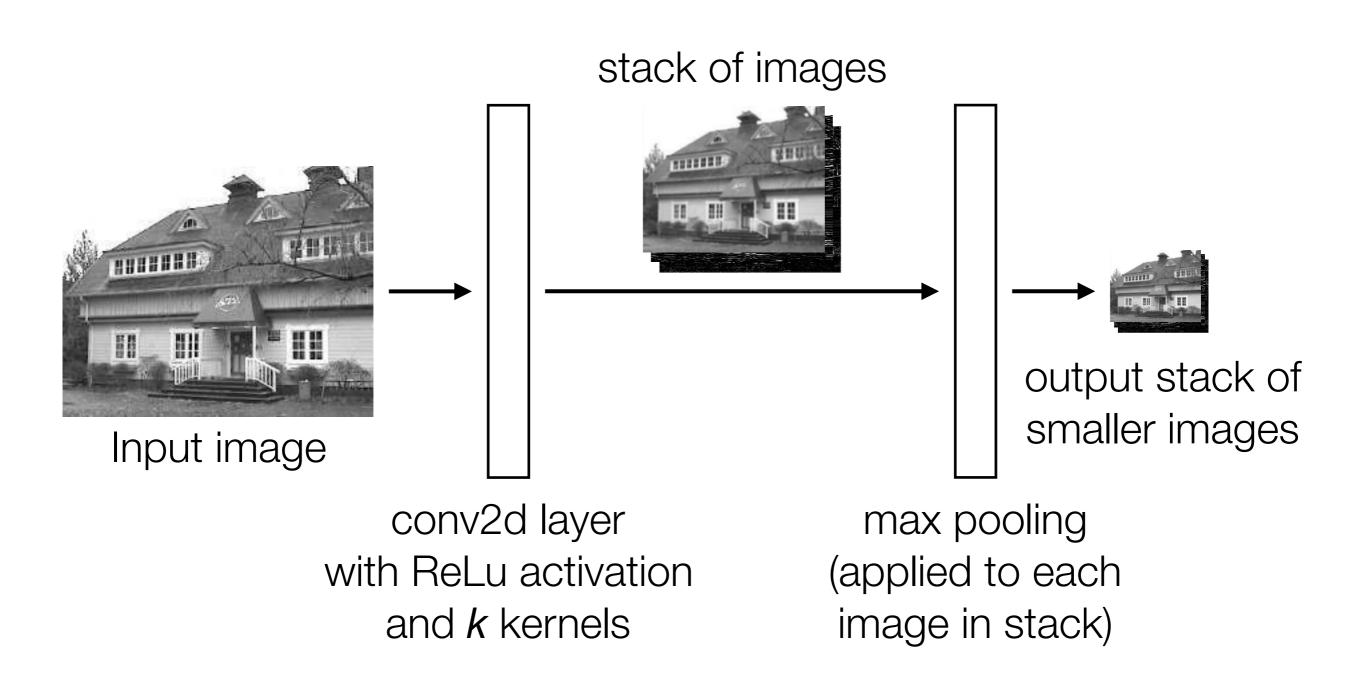
What numbers were involved in computing this 1? -

In this example: 1 pixel in max pooling output captures information from 16 input pixels!

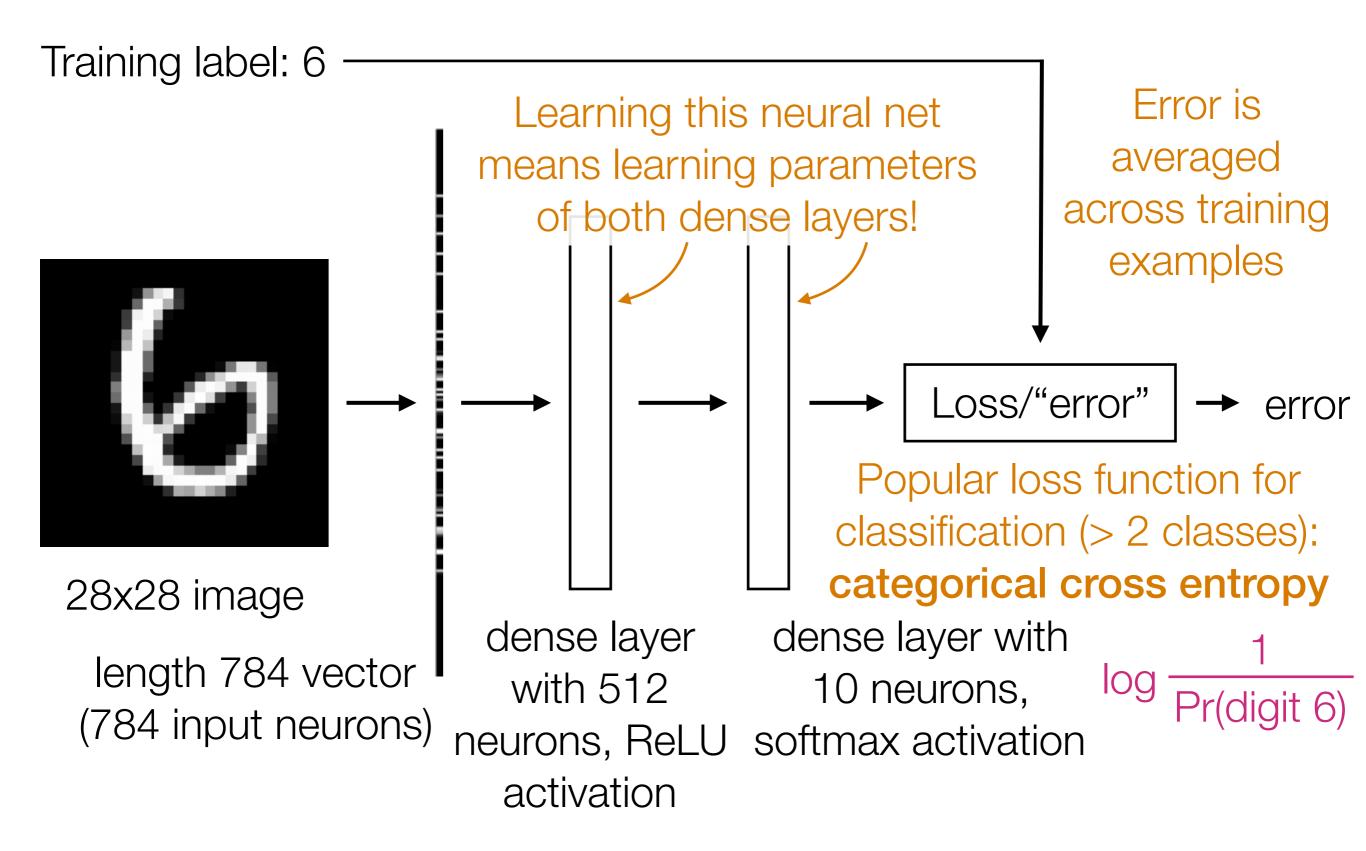
Example: applying max pooling again results in a single pixel that captures info from entire input image!

1 3 1 3

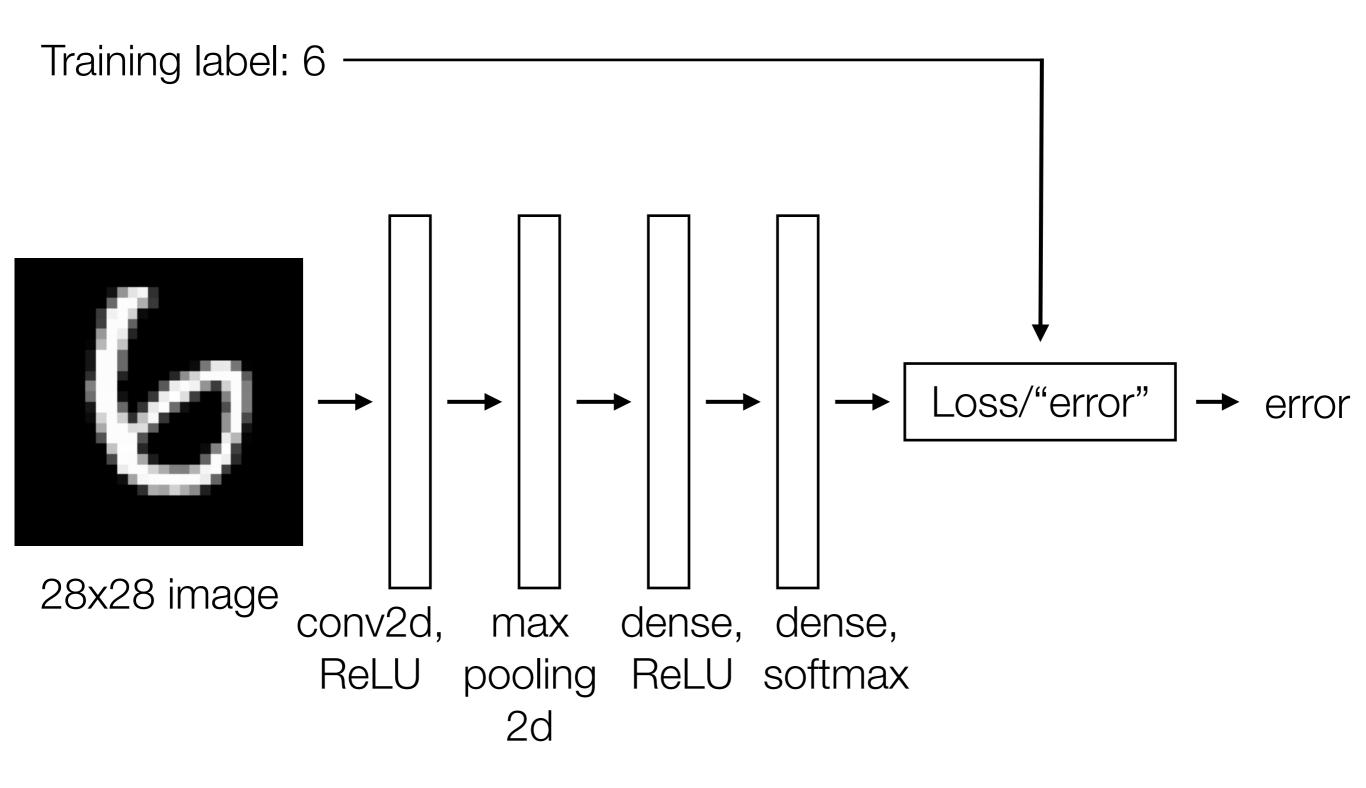
# **Basic Building Block of CNN's**



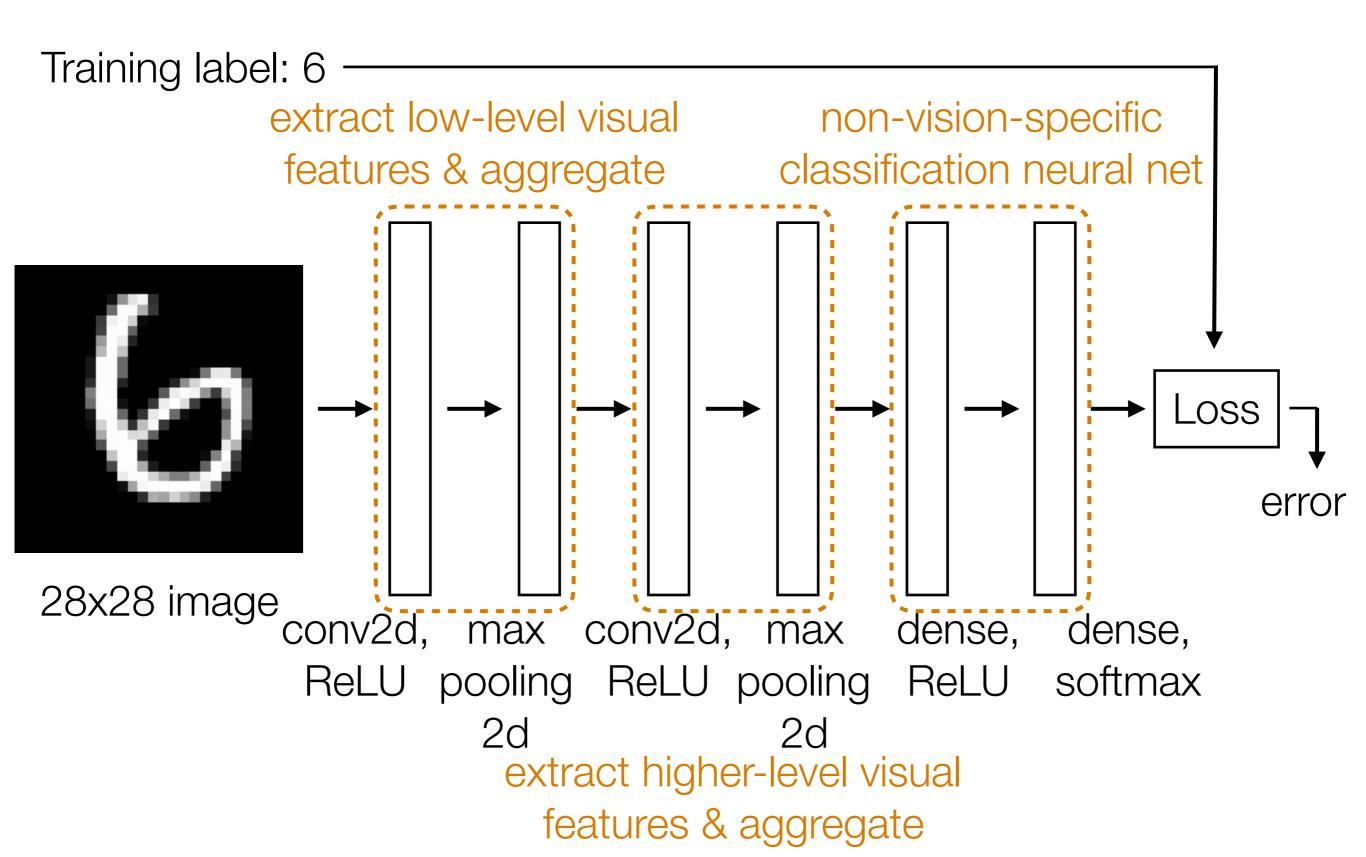
# Handwritten Digit Recognition



# Handwritten Digit Recognition



# Handwritten Digit Recognition



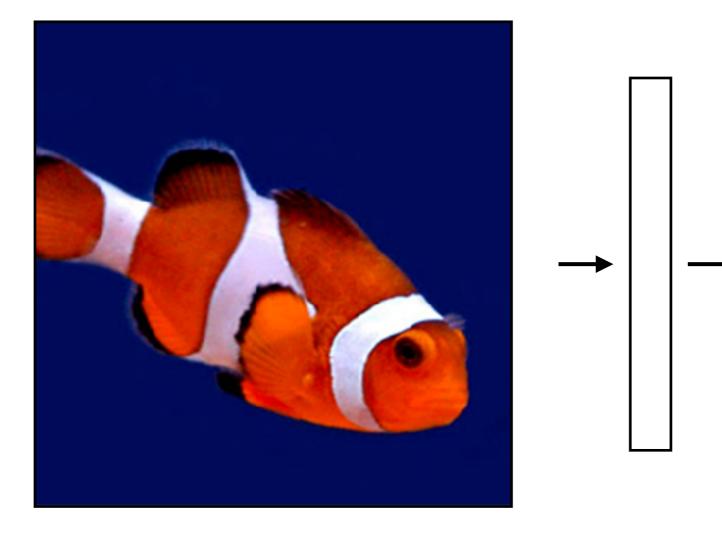
### **CNN Demo**

## **CNN's**

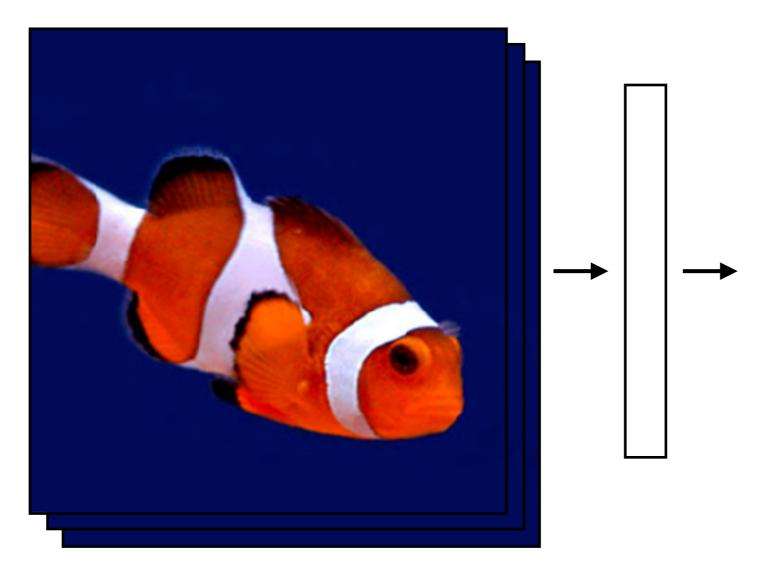
- Learn convolution filters for extracting simple features
- Max pooling aggregates local information
- Can then repeat the above two layers to learn features from increasingly higher-level representations
- Convolution filters are shift-invariant
- In terms of invariance to an object shifting within the input image, this is roughly achieved by pooling

# Recurrent Neural Networks (RNNs)

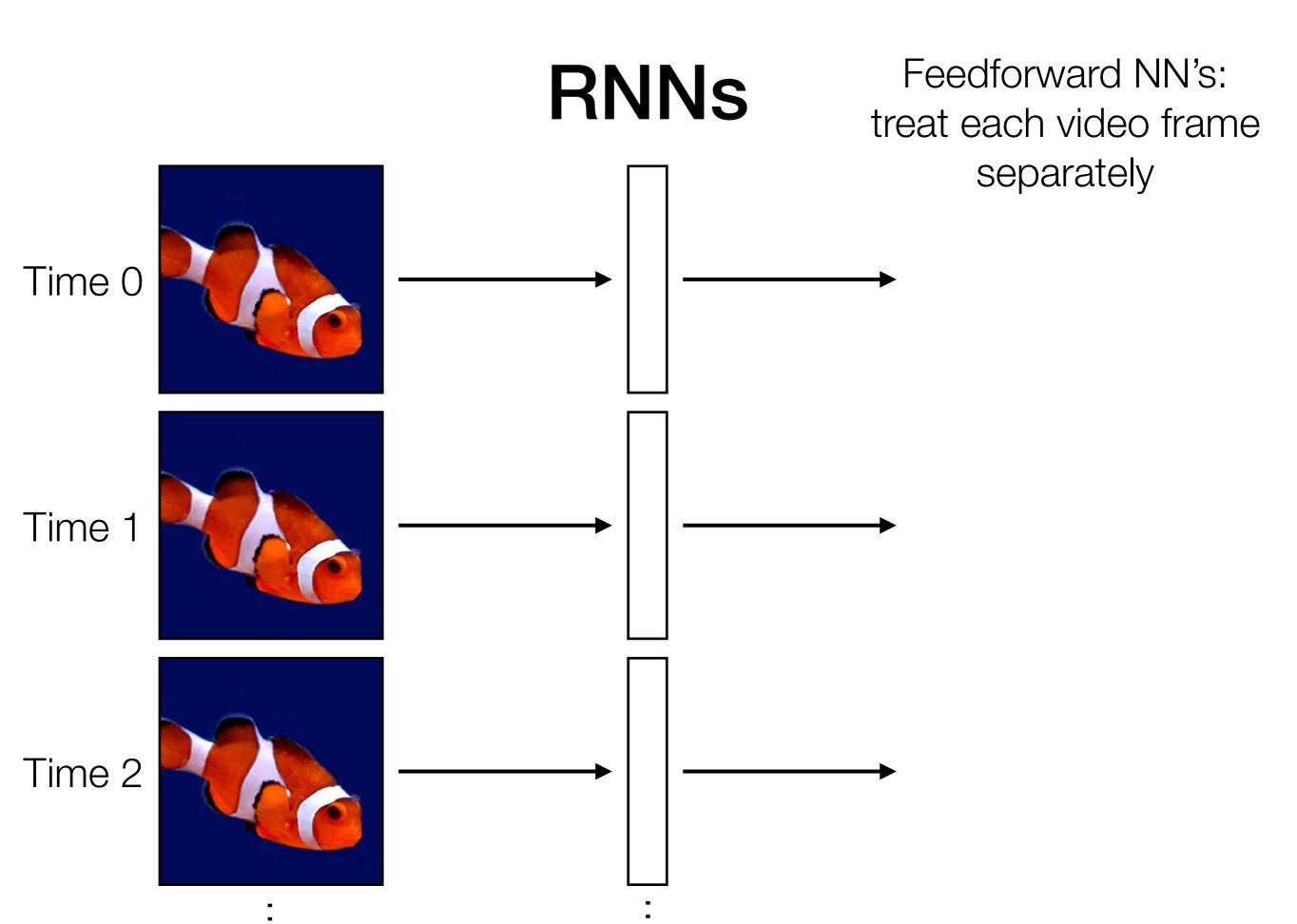
#### What we've seen so far are "feedforward" NNs

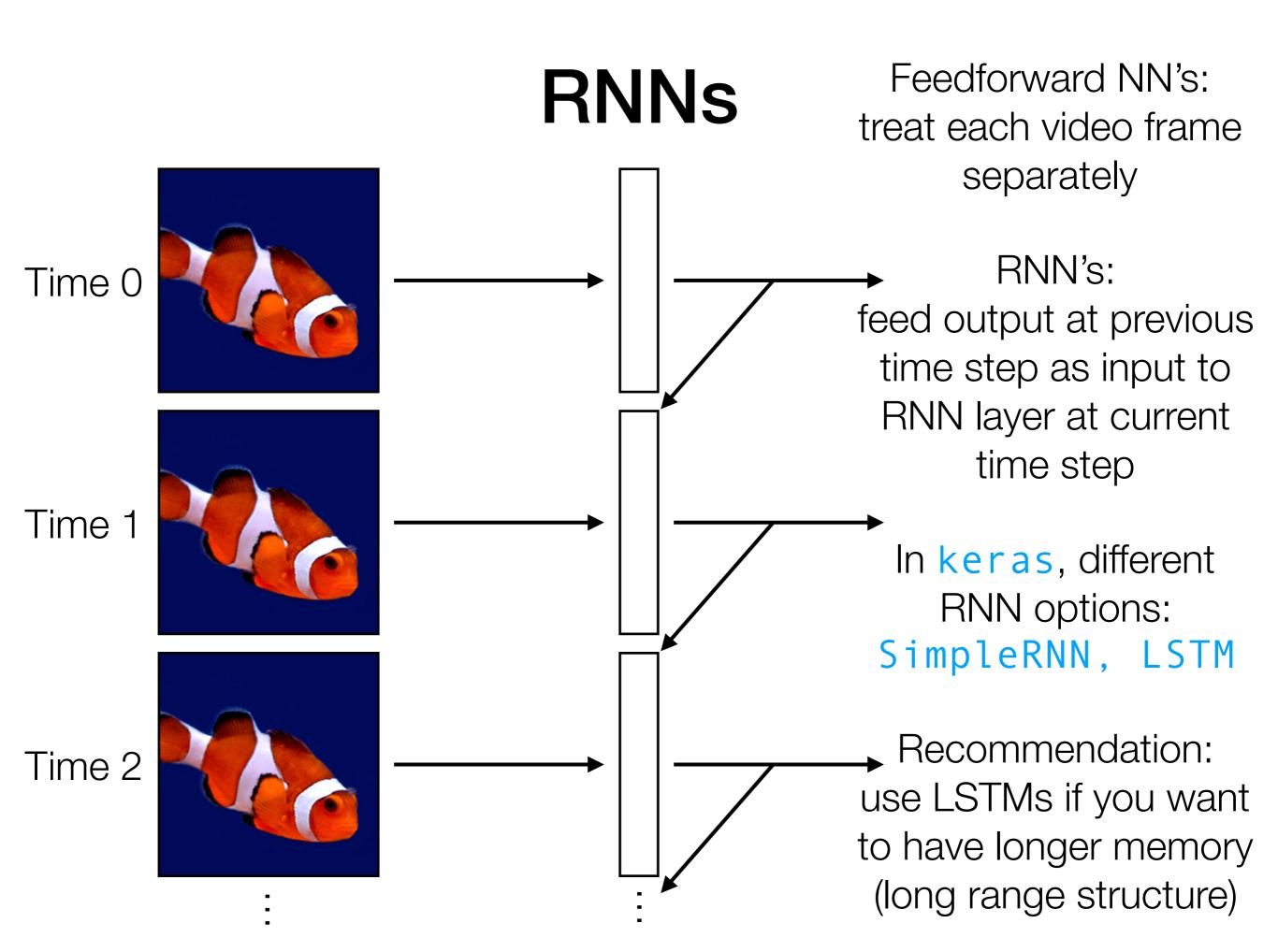


What we've seen so far are "feedforward" NNs



What if we had a video?





Feedforward NN's: treat each video frame separately

### RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)



Time series

LSTM layer

like a dense layer that has memory

Feedforward NN's: treat each video frame separately

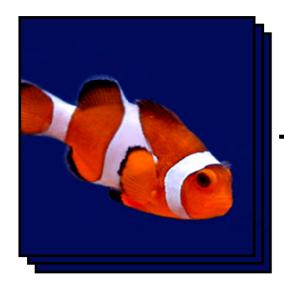
### RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)



Time series

LSTM layer

like a dense layer that has memory

Feedforward NN's: treat each video frame separately

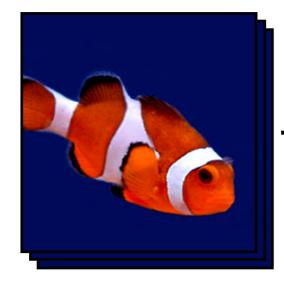
### RNN's:

readily chains together with other neural net layers

feed output at previous time step as input to RNN layer at current time step

In keras, different RNN options: SimpleRNN, LSTM

Recommendation: use LSTMs if you want to have longer memory (long range structure)



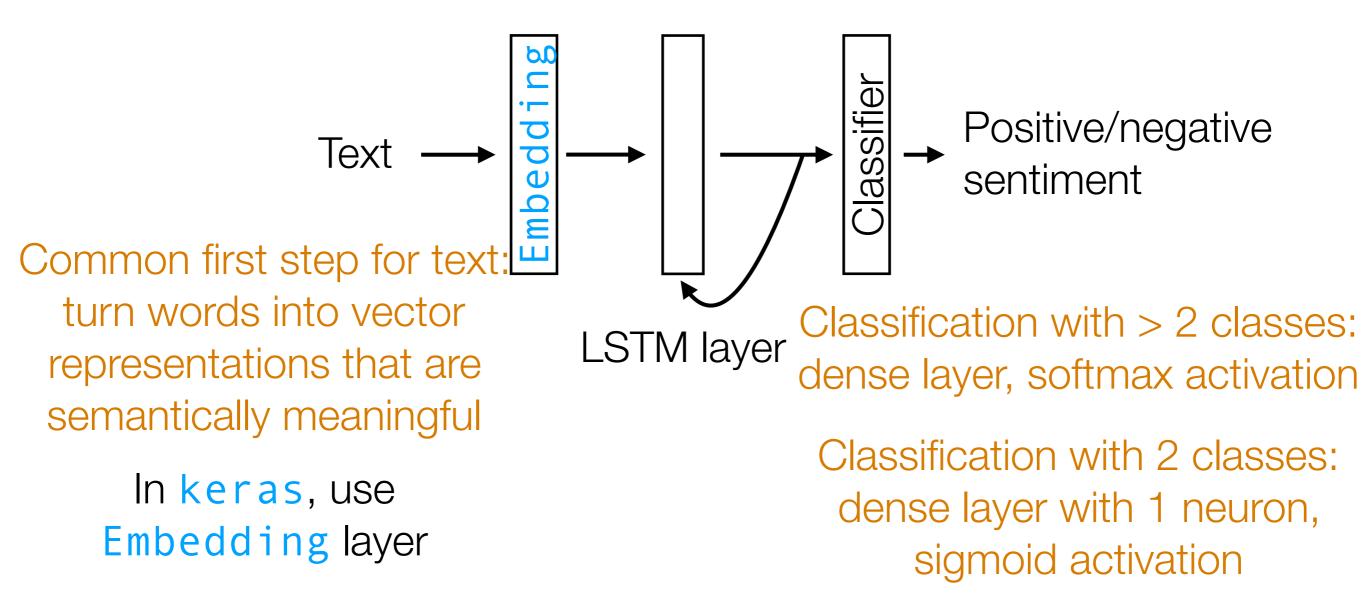
Time series

LSTM layer

lassif

like a dense layer that has memory

Example: Given text (e.g., movie review, Tweet), figure out whether it has positive or negative sentiment (binary classification)



Demo

- Neatly handles time series in which there is some sort of global structure, so memory helps
  - If time series doesn't actually have global structure, performance gain from using RNNs could be little compared to using 1D CNNs
- An RNN layer should be chained together with other layers that learn a semantically meaningful interpretation from data (e.g., CNNs for images, word embeddings like word2vec/ GloVe for text)

Suppose the neural network has a single real number parameter w

Loss/"error" of the neural network *L(w)* 

The skier wants to get to the lowest point The skier should move rightward (*positive* direction) The derivative at the skier's position is *negative* tangent line

initial guess of

good parameter

setting

In general: the skier should move in opposite direction of derivative

In higher dimensions, this is called gradient descent

Suppose the neural network has a single real number parameter w

↑Loss/"error" of the neural network *L(w)* 

Suppose the neural network has a single real number parameter w

↑Loss/"error" of the neural network *L(w)* 

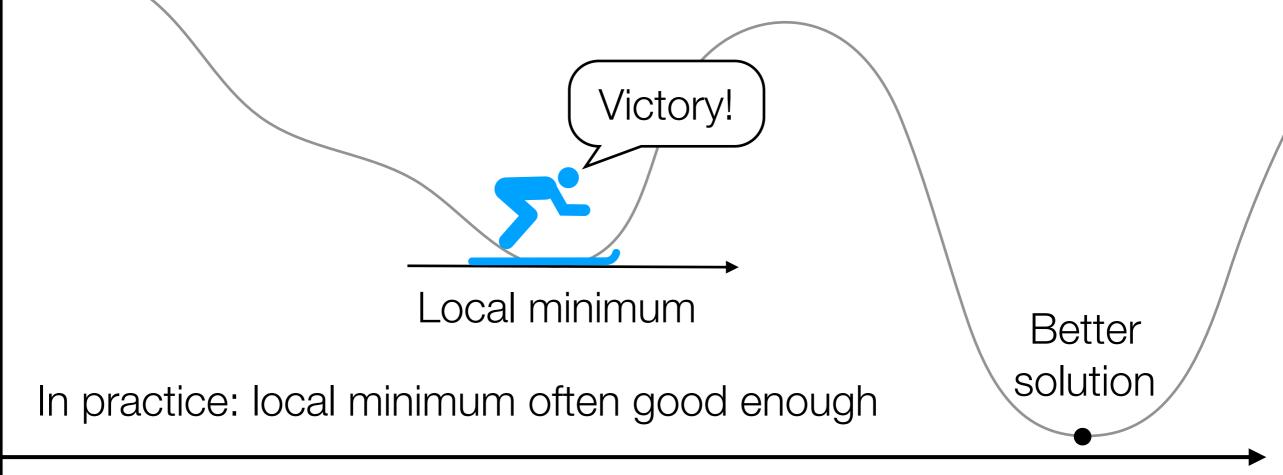
Suppose the neural network has a single real number parameter w

↑Loss/"error" of the neural network *L(w)* 

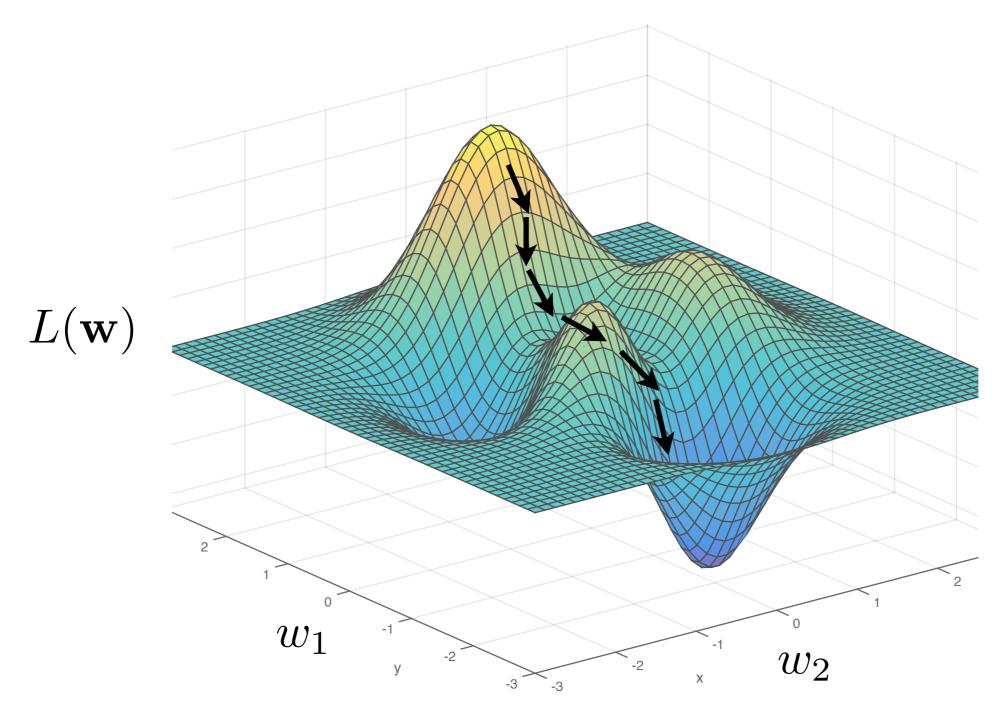
Suppose the neural network has a single real number parameter w

▲Loss/"error" of the neural network *L(w*)

In general: not obvious what error landscape looks like! → we wouldn't know there's a better solution beyond the hill



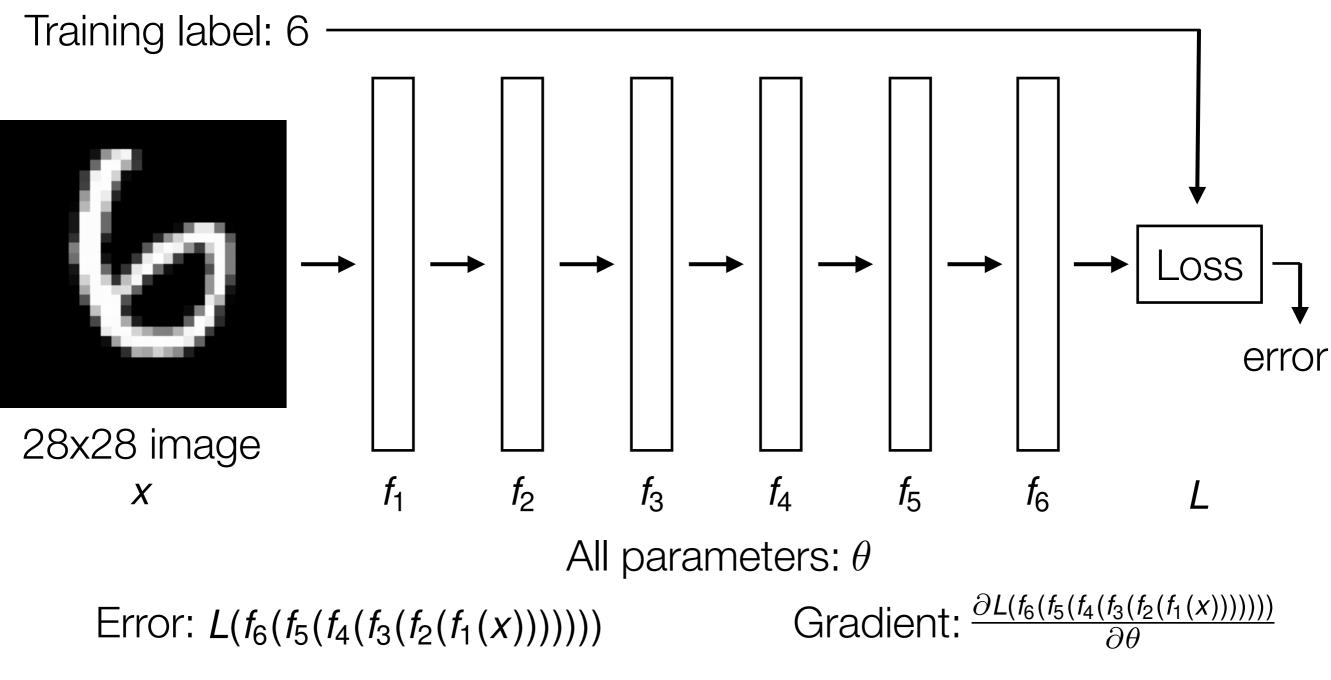
2D example of gradient descent



Slide by Phillip Isola

Remark: In practice, deep nets often have > *millions* of parameters, so *very* high-dimensional gradient descent

# Handwritten Digit Recognition



Automatic differentiation is a crucial component to learning deep nets! Careful derivative chain rule calculation: back-propagation algorithm

# **Dealing with Small Datasets**

- Data augmentation
  - Generate perturbed versions of your training data (e.g., for images, add mirrored versions of images, rotated versions, etc) to get larger training dataset
- Fine tune
  - Is there an existing pre-trained neural net on a similar task? If so, reuse pre-trained model and modify the neural net slightly and train (using existing weights as initialization)

# Lots More to Deep Learning

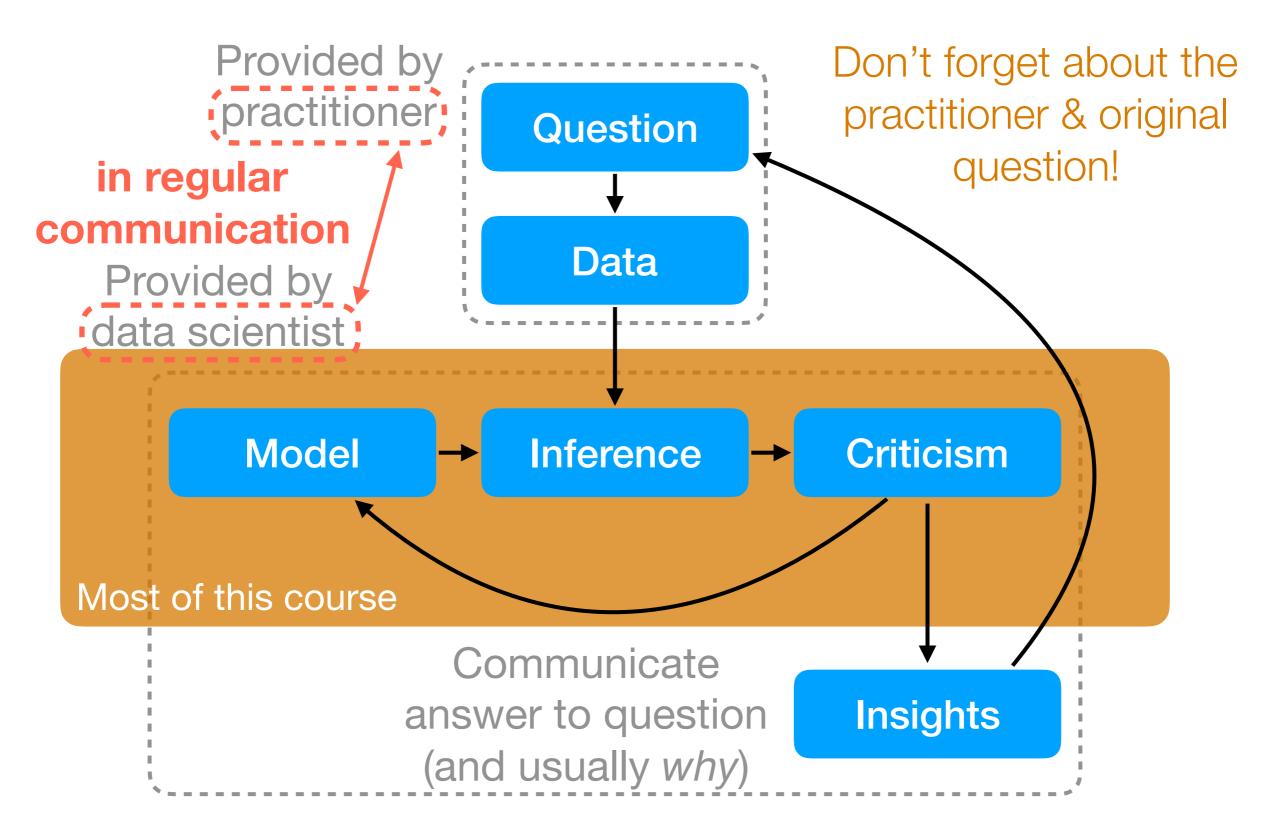
- Extremely important bit we haven't covered: visualizing what the deep net learned
- Some other cool ideas:
  - Self-supervised learning: remove parts of the data and predict the missing parts from the other parts (this is the key idea for word2vec!) — no training labels required!
  - Generative adversarial networks: 2 deep nets, one that learns a generative process for data, and another that tries to classify whether a data point is generated (synthetic) or real
  - Deep reinforcement learning: train AI to play Go and other games, also important in robotics

# The Future of Deep Learning

- Deep learning currently is still limited in what it can do the layers do simple operations and have to be differentiable
  - How do we make deep nets that generalize better?

- Still lots of engineering and expert knowledge used to design some of the best systems (e.g., AlphaGo)
  - How do we get away with using less expert knowledge?
- How to properly do lifelong learning?

### 95-865



# 95-865 Some Parting Thoughts

- Remember to visualize different steps of your data analysis pipeline — very helpful when you're still debugging
- Often times in practice there may be little or no training labels
  - Is it possible to predict certain parts of the data from other parts? (Some times, we can set up a self-supervised task)
  - If we have to manual label, what's the best way to do it?
- Usually there are *tons* of models that you could try
  - It's good practice to come up with <u>quantitative metrics</u> that make sense for the problem you're trying to solve, and for which you can <u>evaluate models using a prediction</u> <u>task on held-out data</u>

#### Thanks for being a beta tester!